Very thin solid-on-liquid structures: the interplay of flexural rigidity, membrane force, and interfacial force
نویسندگان
چکیده
This paper studies a solid film lying on a liquid layer, which in turn lies on a solid substrate. It is well known that, subject to a compressive membrane force, the solid film wrinkles, dragging the liquid underneath to flow. When the solid film is very thin, the ratio between the number of atoms at the surface and that in the bulk becomes significant, so that surface stress contributes to the membrane force. When the liquid layer is very thin, the two interfaces bounding the liquid interact with each other through forces of various physical origins. We formulate the free energy of the system, and carry out a linear perturbation analysis. A dimensionless parameter is identified to quantify the relative importance of flexural rigidity, membrane force, and interfacial force on stability of the structure. Depending on the nature of the interfacial force, several intriguing behaviors are possible; for example, the solid film may remain flat under a compressive membrane force, or form wrinkles under a tensile membrane force. We estimate the dimensionless parameter for interfacial forces of several specific origins, including photon dispersion, electrical double layer, and electron confinement. Emphasis is placed on identifying the thickness ranges of the solid film and of the liquid layer within which these forces are important. 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Morphological Instability of Solid-on-Liquid Thin Film Structures
Subject to a compressive membrane force, a solid film on a liquid layer may form wrinkles. When the solid film is very thin, surface stresses contribute to the membrane force. When the liquid layer is very thin, the two interfaces bounding the liquid interact with each other through forces of various physical origins. We formulate the free energy of the solid-on-liquid structure, and carry out ...
متن کاملPerformance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor
During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...
متن کاملSound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length
In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...
متن کاملThin Films in Partial Wetting: Internal Selection of Contact-Line Dynamics.
When a liquid touches a solid surface, it spreads to minimize the system's energy. The classic thin-film model describes the spreading as an interplay between gravity, capillarity, and viscous forces, but it cannot see an end to this process as it does not account for the nonhydrodynamic liquid-solid interactions. While these interactions are important only close to the contact line, where the ...
متن کاملEvaluating the effects of near-field earthquakes on the behavior of moment resisting frames
Following the 1994 Northridge and 1995 Kobe earthquakes, most of modern structures damaged seriously or devastated totally despite the seismic codes of these countries that had been expected to bear advanced criteria for seismic design of structures. After extensive research, the most probable reason of those destructions was attributed to special specifications of near-field earthquakes. In th...
متن کامل